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Abstract

The purpose of this project was to develop sampling-based algorithms to discover hidden struc-
ture in massive data sets. Inferring structure in large data sets is an increasingly common task in
many critical national security applications. These data sets come from myriad sources, such as
network traffic, sensor data, and data generated by large-scale simulations. They are often so large
that traditional data mining techniques are time consuming or even infeasible. To address this
problem, we focus on a class of algorithms that do not compute an exact answer, but instead use
sampling to compute an approximate answer using fewer resources.

The particular class of algorithms that we focus on are streaming algorithms, so called because
they are designed to handle high-throughput streams of data. Streaming algorithms have only a
small amount of working storage – much less than the size of the full data stream – so they must
necessarily use sampling to approximate the correct answer. We present two results:

• A streaming algorithm called HyperHeadTail, that estimates the degree distribution of a
graph (i.e., the distribution of the number of connections for each node in a network). The
degree distribution is a fundamental graph property, but prior work on estimating the degree
distribution in a streaming setting was impractical for many real-world application. We
improve upon prior work by developing an algorithm that can handle streams with repeated
edges, and graph structures that evolve over time.
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• An algorithm for the task of maintaining a weighted subsample of items in a stream, when the
items must be sampled according to their weight, and the weights are dynamically changing.
To our knowledge, this is the first such algorithm designed for dynamically evolving weights.
We expect it may be useful as a building block for other streaming algorithms on dynamic
data sets.
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Preface

Note that the recipient of this LDRD, the author of this report, left Sandia to pursue other oppor-
tunities before the completion of the project. Thus, some of the research that follow represents
unfinished work.
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Summary of Accomplishments

This document constitutes the final report for LDRD #186366: Sampling-Based Algorithms for
Estimating Structure in Big Data. The project, though cut short due to the PI’s departure from
Sandia, led to two primary research results:

• The first is a streaming algorithm, HyperHeadTail, used for estimating the degree distri-
bution of a dynamic, evolving graph. This work was done jointly with Andrew Stolman, a
Ph.D. student at the University of California, Santa Cruz, who the PI supervised over the
summer of 2016 and continued to collaborate with afterwards.

– The work was written up in a paper entitled ”HyperHeadTail: a Streaming Algorithm
for Estimating the Degree Distribution of Dynamic Multigraphs.” It will be submitted
soon to a peer-reviewed conference.

– An implementation of the algorithm was written and released under an open-source
license for the academic community. It can be found at
https://github.com/astolman/HyperHeadTail

– The PI gave an invited talk on the result at the Workshop on Local Algorithms (WOLA),
sponsored by MIT and Microsoft Research New England, in October 2016.

A complete draft of the paper resulting from this work can be found in Chapter 1.

• The second is an algorithm, Dynamic Weighted Reservoir, for maintaining a weighted
subsample of items in a stream, when the items must be sampled according to their weight,
and the weights are dynamically changing. This solves a problem that, to the best of our
knowledge, has not been solved before, and we expect it to be useful as a building block for
other streaming algorithms.

The basic version of this algorithm is written up in Chapter 2. This research may lead to
publication, but is currently a work in progress.
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Chapter 1

HyperHeadTail: a Streaming Algorithm for
Estimating the Degree Distribution of
Dynamic Multigraphs

1.1 Introduction

Many massive datasets are naturally interpreted as a stream of edges in a graph. Packets sent be-
tween IP addresses, messages sent between users of a social network, vehicles dispatched between
locations — all can be interpreted as edges between nodes in a network. Often the number of nodes
and edges is so large that storing and computing on the whole stream is time and space-intensive
and, in some cases, infeasible. To make sense of such networks, we need algorithmic tools that can
analyze them in real-time, using only a fraction of the space required to store the whole stream.
The goal is to to get an approximate, holistic view of the network rather than requiring an exact
answer.

One of the most fundamental properties of a network is its degree histogram. That is, for every
positive integer k, how many nodes in the network have degree k? When this is normalized by the
number of vertices in the graph, it is referred to as the degree distribution. The degree distributions
of different graphs have been widely studied [5, 12]. Famously, social networks often empirically
exhibit a power law (or more generally “heavy-tailed”) degree distribution [2]. Yet, despite this
importance, little research has been done on estimating the degree distribution of real-world graphs
in a streaming context.

1.1.1 Problem Statement

We assume our input is a stream consisting of entries of the form 〈u,v, t〉 where u,v are vertices
from some vertex set V (the elements of V might be unknown before they arrive in the stream),
and t is an integral timestamp. The entries arrive in increasing timestamp order. Call such a stream
a dynamic edge stream. For a given time period ti to t j (where ti < t j) we define G(ti,t j) to be the
graph formed by the unique edges that arrived between time ti and t j, and the vertices incident
upon those edges.
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For vertex v∈V , let d(v) denotes its degree. Let n(d) be the number of vertices of degree d, and
N(d) be the number of vertices of degree at least d. The degree histogram is the sequence {n(d)}
for d = 1,2,3, ... and the complementary cumulative degree histogram (CCDH) is the sequence
{N(d)}. Technically, the degree distribution is the degree histogram, normalized by the number of
nodes in V . However, consistent with the literature, we focus on approximating the CCDH instead
of the degree distribution[5]. This is because the degree distribution itself is quite noisy in real
data, and sensitive to minor changes. Also, informally, we refer to elements of {N(d)} for small
values of d as the head of the CCDH, and for large values of d as the tail of the CCDH. Our goal
is to develop an algorithm that, with minimal space usage, can stop at any time t j in the stream and
estimate the CCDH of G(t j−w,t j) for any positive integer w.

1.1.2 Previous Work

The only previous work on estimating the degree distribution in a streaming context comes from
Simpson, Seshadhri, and McGregor [23]. They develop an algorithm called HeadTail, and demon-
strate its efficacy on several real-world graph datasets. Crucially, they also define a new distance-
like metric called the “Relative Hausdorff distance” for evaluating the quality of HeadTail’s ap-
proximations.

The HeadTail algorithm suffers from two flaws that prevent it from being deployed in real-
world systems. First, it is designed for graphs, not multigraphs. In other words, it assumes it
will only see each unique edge once in the stream. This means that it cannot distinguish between
the case when a node A has many unique neighbors, or just one neighbor that it connects to many
times. For communication networks, such as network traffic data, multiple edges between the same
pair of nodes A and B is very common, but it important that we are able to distinguish this from
the case when A connects to many different nodes and plays a more critical role in the network.

Second, the HeadTail algorithm is designed to handle a static graph, not a dynamic one. In the
model of [23], the algorithm sees the entire edge stream once, and then must output an approxima-
tion. But for many applications, we would like to maintain an approximation over a variable length
time-window, so that we can compare the approximation from, say, the last day’s worth of data to
the last week’s or month’s, etc. We would also like an approximation that remains up-to-date over
the most recent time window, without recomputing from scratch each time. Such an approximation
can help us detect anomalies or large changes in the degree distribution in real-time.

1.1.3 Contributions

The Algorithm HyperHeadTail: In this work, we develop an extension of HeadTail called
HyperHeadTail that is much better suited to real world data sets since it allows for graph streams
with duplicate edges, and also allows for querying over variable-length, sliding time windows. The
algorithm is described in detail in the next section.
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The Incorporation of HyperLogLog: In order to achieve accurate estimates on streams
with repeated edges, we incorporate the state-of-the-art algorithm HyperLogLog [13] in a novel
way. The original algorithm was designed to tackle the problem of counting the number of unique
elements in a single stream, but we use it to count the number of unique edges incident upon
each vertex that we track. We also adjust the number of tracked node, and hence the number of
HyperLogLog instances deployed, using the idea of legitimacy lists.

Legitimacy Lists: Naively employing the HyperLogLog algorithm at tracked nodes leads to a
problem when we try to build an algorithm that works for variable-length time windows. Either the
algorithm achieves a high degree of accuracy at small window sizes and has a high space usage, or
it uses significantly less space at the cost of accuracy in smaller windows. In order to circumvent
this, HyperHeadTail incorporates a new data structure which we call Legitimacy Lists in order to
use only a small amount of additional space while maintaining accuracy at all time scales.

Fixing Relative Hausdorff Distance: The original paper of Simpson, et. al. presented a new
distance metric for degree histograms they called Relative Hausdorff Distance. We believe it is a
useful distance metric, but it suffers from some shortcomings when applied to discrete objects like
degree histograms that we address in this paper.

Empirical Results: We implement HyperHeadTail and demonstrate its efficacy on both real-
world and synthetic datasets. In our empirical tests, HyperHeadTail nearly matches the perfor-
mance of HeadTail on edge streams without duplicate edges, showing that the additional func-
tionality can be achieved at little cost. On edge streams with duplicate edges, HyperHeadTail is
vastly superior to naive methods, and can effectively track changes to the degree distribution over
time. We discuss our experimental results in Section 1.3.

1.2 Algorithm Details

1.2.1 Review of the HeadTail Algorithm

Since our algorithm, HyperHeadTail, builds heavily on the HeadTail algorithm of [23], we re-
view it here.

The motivating idea behind HeadTail is that two different sampling methods can be deployed
simultaneously to capture accurate estimates of both the head and the tail of the degree distribu-
tion. A uniform random sample of vertices will accurately estimate the number of nodes of low,
frequently occurring degrees, while a sample of vertices biased by degree will accurately find high
degree vertices at the tail.

HeadTail works on a model where the edge stream consists of timestamp-less (src,dest) pairs.
The algorithm maintains two sets of pairs called Sh and St , also referred to as the head set and tail
set, respectively. The head and tail set contain pairs of the form (v,c) where v is a vertex and c is
a count of the encountered edges incident upon that vertex. These are implemented as hash tables
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with vertex labels as keys and a count for each vertex as the value.

The head set contains a uniform random sample of the nodes in the graph chosen with probabil-
ity ph and maintains an exact count of their degrees. The tail set maintains a sample of the vertices
which is biased by degree. This is achieved by flipping a coin with probability pt each time an
edge is observed. So if a vertex has more edges, it has more chances to enter St . We estimate the
number of edges that passed in the stream before via the loss factor, `(r), where r is the number of
edges we saw in the stream for the given vertex. The loss factor is:

`(pt ,r) =
1− pt− (1− pt)

r+1− rpt(1− pt)
r

pt(1− (1− p)r)

Theorem 1. A random variable drawn from a geometric distribution with parameter pt condi-
tioned on the event that it is less than d has expectation `(d). We refer the reader to [23] for the
proof.

The point at which HeadTail switches between the head estimate and tail estimate is the thresh-
old degree, dthr in Estimate is calculated based on a Chernoff bound of the head set. It is the point
in the CCDH at which there are few enough nodes that we no longer have confidence in a uniform
random sample of nodes to accurately capture it. It is important to note that the authors of [23]
were unable to prove general guarantee on the accuracy of the tail estimate, but in practice it works
very well.

1.2.2 Sliding Windows and Legitimacy Lists

In the streaming literature, a model that allows for querying an algorithm over various time win-
dows is referred to as the sliding window model [8]. We seek to adapt HeadTail to such a model.

The simple counters of HT are insufficient in our sliding window model. For example, it is
impossible to discern from a straight count of all the edges incident upon a vertex how many of
those edges arrived in the past ten, twenty or one thousand time units. Furthermore, we do not
wish to exclude streams which contain repeated edges, whether those parallel edges have the same
timestamp or do not. It is clear that we require a more sophisticated mechanism.

Fortunately, we can leverage past work on estimating the number of distinct elements in a
streams. We use the state-of-the-art cardinality estimator HyperLogLog developed by Flajolet et al
[13] which has been modified to handle sliding window models [3]. We refer to these counters as
Sliding HyperLogLog objects (SHLL). For the remainder of this paper, we will treat SHLL as a
black box which gives accurate estimations over any time window.

One of the key departures from HeadTail is that HyperHeadTail allows ph and pt to vary as
functions of time. For short time window queries, the graph we are interested is rather small and
so rather large values of ph and pt are needed to ensure accurate estimates. However, we do not
wish ph to remain large for large windows since this would entail tracking a large fraction of the
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nodes in the graph. If we allow ph and pt to be decreasing functions of time, we can incorporate
this idea into our algorithmic design.

Accomplishing a ph which varies with time for the head set is quite simple. Suppose that we
encounter an edge (u,v) in the stream and the hash value of u is h such that h ≤ ph(0), but there
exists some w such that h≥ ph(w). If we make a note of this hash value and of the time at which we
observed this edge, say it is t, we can delete this vertex from Sh at time t +w. Of course, checking
every node’s legitimate status in Sh at every time unit is quite time consuming and so we only do
so periodically in a manner we will describe in more detail further on.

For the tail set, it is not enough to track a single hash value, since the hash values of each
incident edge are relevant to the operation of the algorithm. For each vertex, v, in St , and each
window size w, we wish to answer the question Would v have been entered into St if we ran the
graph stream of the last w time units through HeadTail? In order to answer this question, we
maintain a Legitimacy List for each node in St . These are lists of pairs of the form (h, t), where h is
the hash value of an edge we observed in the stream and t is the timestamp at which we observed
it. Naively, we could keep track of the hash value and timestamp of each edge we see, and when it
came time to estimate the degree of that vertex, we could look through the edges that we observed
in the last w time units and check to see if there is among them a hash value which is less than
pt(w). However, it is not necessary to record each edge we observe. Suppose we encounter an
edge with hash value h1 at time t1, and later on, at time t2, we encounter an edge with hash value
h2 < h1. The first edge is no longer necessary to answer the question, would this node have been
tracked by HeadTail? Since if h1 is a small enough hash value to answer this question in the
affirmative, so must h2. So, when a new hash is added to a legitimacy list, we check the list and
delete from it all entries which have a greater hash value. In this way, we maintain the invariant
that the legitimacy lists are sorted in a strictly decreasing order of hash values and increasing order
of timestamps.

The legitimacy lists reduce the problem of deciding whether a given node in St should be
counted for a given evaluation to the problem of tracking the minimum of a stream over a sliding
window. This is analyzed in detail in [8]. We present the result below and refer the reader to [8]
for the proof.

Theorem 2. The space required for each legitimacy list is O(logd(v)) where d(v) is the degree of
the vertex v.

1.2.3 A Note on Notation

Algorithm 1 contains the pseudo code for our algorithm. Just as with HT, we maintain a head set
and tail set, still referred to as Sh and St respectively. If v is a vertex in either set, St(v).SHLL
and Sh(v).SHLL refer to the SHLL counter associated with that vertex in those respective sets.
St(v).LegitimacyList is the Legitimacy List (which we will explain in the next section) associ-
ated with that vertex, and Sh(v).LastUpdated is the timestamp for the last time v was updated in
Sh.
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1.2.4 HyperHeadTail

In this section, we present a detailed overview of each of the methods of the HyperHeadTail
algorithm. The pseudocode for these can be found in Algorithm 1.

Overview

HyperHeadTail is designed to give a running estimate of the CCDH of an edge stream. It is
initialized with the parameters ph and pt which must be monotonically decreasing functions of
time. These roughly correspond to the probabilities that a vertex will be tracked by the algorithm.

The algorithm operates by examining the edges in a stream one at a time in order of increasing
timestamp. Each time an edge is encountered. The Update method of Algorithm 1 is called. This
method alters the underlying data structures to incorporate the new information.

The persistent data structures maintained by HyperHeadTail are the two sets Sh and St . These
are hash tables which map keys in V to the information required to compute the degree of each ver-
tex over sliding windows. What information is required varies between the two sets. In both cases,
we require a Sliding HyperLogLog counter, and while the head set requires only the timestamp
of the time at which it was last updated, St requires that each node also have a Legitimacy List, and
time of arrival associated with it.

The data structures are initialized so that Sliding HyperLogLog counters are empty. Sh begins
with all the elements of V which have hash values less than ph(0), while St begins operation
completely empty.

At any time, a user of HyperHeadTail may call the method Estimate(w) which returns an
estimate of the CCDH over the last w time units from the time at which Estimate was called. This
computes from scratch the entire CCDH vector.

Update

This is the method which updates the data structures every time an edge 〈u,v, t〉 is encountered.
Since there are two data structures, Sh and St , HyperHeadTail must update each of them.

For the head set, HyperHeadTail considers each endpoint. For each endpoint, v, we check the
hash value of each endpoint. If that hash value is less than ph(0), we say that vertex is in Sh. In
this case, we increment Sh(v).SHLL, and change Sh(v).LastUpdated to the current timestamp. If
the vertex is not in Sh, we simply do nothing and move to the next step.

For the tail set, we also consider each endpoint in turn. For a given endpoint, v, we first check
to see if v is in St . If it is, we increment v’s Sliding HyperLogLog counter, and add (h, t) to
v’s Legitimacy List, where h is the hash value of the edge (v,u), and t is the current timestamp.
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Then, in order to maintain the invariant that v’s legitimacy list is sorted in decreasing order of hash
values, we search through it and delete from it all hash values which are greater than h.

If an endpoint is not in St , it is given an opportunity to join St . We compute the hash value of
(u,v), and if it less than pt(0), we enter it into St and note the time at which it was added.

Clean Sh and Clean St

Each clean method is called once every δ |Sh| and δ |St | calls to Update. Since the cleaning methods
each require time that is roughly linear in the size of its respective set, there is a tradeoff between the
time we spend cleaning the sets, and the amount of unnecessary information we store in memory.
We found that keeping the calls down to a constant fraction of the size of the sets, we were able to
achieve a good balance. Further customization and more sophisticated schemes are an avenue of
possible future research.

Each of the clean methods search for nodes which may not be relevant to any call to Estimate.
For Sh, the clean method simply checks the time at which each node was last updated and the
hash value of that vertex. If the vertex was last updated so long ago that it’s hash value is less
than ph(t − t ′) for the current timestamp t and it’s LastUpdated value t ′, all of it’s information
is cleared. For St , the process is quite similar, however, we need to check it’s legitimacy list to
see if there is a single entry there which justifies its presence, i.e. some element (h, t1) such that
h≤ pt(t− t1). If no such entry exists, the vertex is purged from St .

Estimate

The Estimate method computes the CCDH over a given window size, w. First, we collect the
counts from each Sliding HyperLogLog counter in Sh for each node in Sh with a hash value
which is less than ph(w). We will refer to these counts as ch(v) for each vertex v. Observe that
these counts are guaranteed to take into account every edge seen by HyperHeadTail over the last
w time units since every edge incident upon a vertex in Sh causes Update to increment that edge’s
Sliding HyperLogLog counter unconditionally.

This is not the case for vertices in St , and the situation is further complicated by the sliding
window. In HeadTail, the authors assumed a loss factor of `(pt ,r) for every node in St since the
stream was simply run from beginning to end and then Estimate was queried. Here, we may be
querying at a time and for a window where some of the nodes in St entered into St within the last
w time units, and others have been in St for longer. If the vertex has been in St for longer than w
time units, then we have seen every edge incident upon it, and we call such a vertex an old timer,
and we can set ct(v) = St(v).SHLL.Estimate(w). Otherwise, call the vertex a newcomer, and we
must add in the loss factor `(pt(0),r).

With the counts for each vertex decided, evaluation proceeds much as in HeadTail. We only
expect to have captured a ph(w) fraction of the nodes for each degree in ch(v), and so we multiply
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the counts for the number of nodes by 1/ph(w). For each degree r in ct(v), we expect to have
captured a (1− pt(w))r fraction of the newcomers, and so divide the number of newcomers with
each degree by that. The counts are added together, dthr is calculated just as in HeadTail, and the
resulting vector is returned.

The HyperHeadTail Algorithm
function UPDATE(〈u,v, t〉)

if u 6∈ St AND h(u,v)≤ pt(0) then
Add u to St
St(u).TimeAdded← t

if u ∈ St then
Update St(u)’s SlidingHyperLogLog counter.
Add (h(u,v), t) to front of St(u).LegitimacyList
for (h(u,v), t) ∈ St(u).LegitimacyList do

Let (h(u,v′), t ′) be the previous entry if it exists
if h(u,v)≥ h(u,v′) then

remove (h(u,v), t) from LegitimacyList

if u ∈ Sh then
Increment Sh(u)’s SlidingHyperLogLog counter
Set Sh(u).LastU pdate to t

ch← ch +1
ct ← ct +1
if ch > δ |Sh| then

Clean Sh(t)
ch← 0

if ct > δ |St | then
Clean St(t)
ct ← 0

function CLEAN Sh(t)
for v ∈ Sh do

if h(v)≥ ph(t−Sh(u).LastUpdated) then
Evict v from Sh

function CLEAN St(t)
for v ∈ St do

Legit← False
for (h, t ′) in St(v).LegitimacyList do

if h < pt(t− t ′) then
Legit← True

if Legit is False then
Evict v from St

function ESTIMATE(t,w)
for v ∈ Sh do

if hash(v)≤ ph(w) and Sh(v).LastUpdated≥ t−w then
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ch(v)← the value returned by evaluating Sh(v).SHLL for window w
for v ∈ St do

if St(v).LegitimacyList contains an entry (h, t ′) such that h≤ pt(w) then
if t−St(v).TimeAdded> w then

ct(v)← St(v).SHLL.Estimate(t,w)
v is an old timer

else
r← St(v).SHLL.Estimate(t,w)
ct(v)← r+ `(pt(0),r)
v is a newcomer

Set ch(v) to the count for each SHLL counter of v ∈ Sh
gt(r) ← |{v : ct(v) = r∧ v is an old timer}| + 1/(1 − (1 −

pt(w))r)|{v : ct(v) = r∧ v is a newcomer}|
gh(r)← 1/ph(w)|{v : gh(v) = r}|
dthr←maxd ∑r≥d gh(r)≥ clog(n)/(ε2 ph(w))
for each degree, d do

if d ≤ dthr then
N̂(d)← ∑r≥d gh(r)

else
N̂(d)← ∑r≥d gt(r)

return N̂(r)

1.2.5 Time and Space Complexity

The space maintained by HHT is precisely that used by Sh and St . The number of nodes in these
sets depends heavily on the functions ph and pt as well as the nature of the stream. If the stream
is such that the graph is rapidly changing in terms of which nodes appear in the stream, there may
be very little overlap between the nodes being kept for small windows and those kept for larger
windows. If, on the other hand, the stream is more static in nature, i.e. the nodes which are active
on a small scale are the same as the nodes active on a large scale, then there may be a high level of
overlap. We state our bounds in terms of the space used per node.

Theorem 3 (Space & Time Complexity of HHT). For each node v tracked by HyperHeadTail,
the space used is O(log logd(v) logd(v)), where d(v) is the degree of v. For each call to Update,
the expected running time is O(logd(v)).

Proof. The space required for each tracked node is the space required by each SHLL counter, plus
the space for the legitimacy lists for nodes in St . Following the analysis in [3], SHLL requires size
that is O(log logn∗ logn) where n is the true cardinality of the multiset. Here, the multiset we are
estimating is the neighborhood of a vertex. So we can say that each SHLL counter uses space that
is O(log logd(v) logd(v)) where d(v) is the degree of vertex v in the graph formed by all the edges
since the start of the stream. The legitimacy list is an extension of the minimum sliding window
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problem posed in [8], and following their analysis, it requires O(logd(v)) space. Thus, the overall
space used by each node is O(log logd(v) logd(v)).

The time complexity of the Update operation is simply the time needed to perform the Update
routine of the SHLL objects, which is O(logd(v)) [8]. The time complexity of updating the le-
gitimacy lists is also O(logd(v)) since we must traverse each of the O(logd(v)) entries in it. The
cleaning routines, as previously noted, can be amortized over every call to Update and so do not
affect the asymptotic time complexity.

For a given window size w, the expected number of tracked nodes is O(pt(w)nw + ph(w)mw)
where nw is the number of unique nodes in that time window, and mw is the number of unique
edges. In Section 1.3, we discuss the settings of ph and pt that we use in practice for different
window sizes, and show empirically that the number of nodes tracked is quite small.

1.3 Experimental Results

1.3.1 Distance Measures for CCDH Estimates

One issue raised by [23] is that typical distance measures for comparing CCDH estimates do not
capture our intuitive notion of distance. For instance, consider two graphs: the first a matching
consisting of n/2 disconnected edges, and the second a star graph on n vertices (i.e. one central
node of degree n−1 with an edge to each of the other vertices in the graph). In many respects, the
degree distributions of the two graphs are quite similar - indeed, the only difference is the single
node in the star graph that has degree n−1 instead of degree 1. However, our intuition is that the
two graphs are structurally quite different. Since the tail of the degree distribution contains the
nodes of highest degree in the graph, it has a large bearing on the structure of the graph. We would
like to use a distance metric between degree distributions that is sensitive to such differences in the
tails.

One of the main contributions of [23] was the introduction of a new distance measure, the
Relative Hausdorff (RH) distance, defined as follows:

Definition 1 (Relative Hausdorff distance). Let F and G be non-trivial CCDHs. For ε,δ > 0, we
say that G is (ε,δ )-close to F if:

∀d,∃d′ ∈ [(1− ε)d,(1+ ε)d] s.t.|F(d)−G(d′)| ≤ δF(d)

The Relative Hausdorff (RH) distance between F and G, denoted RH(F,G), is defined as the
minimum ε such that G is (ε,ε)-close to F and F is (ε,ε)-close to G.

Note that the RH distance can be greater than 1. Intuitively, the RH distance captures the
properties we would like in an approximation. In particular, if F is the true CCDH of some graph,
and G is an approximation within a small RH distance, then for small d (where F(d) is large), G
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must produce a decent approximation to the number of nodes of degree d, while for large d (where
F(d) is small), G must find the number of nodes of degree at least d almost exactly, but it can be
slightly off in the degree estimate (d′ instead of d).

In [23], the authors argue that the RH distance is more appropriate than other oft-used distance
measures. For instance, the Kolmogorov-Simonoff D-Statistic, defined as maxd |F(d)−G(d)—, is
often used for comparing degree distributions. However it is insufficient for capturing differences
in the tails of distributions. In the earlier example of the matching versus the star graph, the KS
distance tends to zero as the number of vertices is increased, but the RH distance remains quite
large. Conversely, a k-clique versus a (k− 1)-clique would have large KS distance, but the RH
distance is very small (another popular distance metric, Earth Mover distance, would similarly
assign a large distance between the k-clique and (k−1)-clique).

Fixing a flaw in RH distance

The RH distance as defined in [23] suffers from a flaw, in that it can assign large distance to graphs
that are intuitively close. Consider two graphs, G and G′, both on n+ 2 vertices. Let G be the
bipartite graph in which two vertices have an edge to each of the other n vertices in G, and let G′

be the same graph with one edge removed. These graphs are intuitively very similar. However, the
RH(ccdh(G′),ccdh(G)) is 1, which is quite large. This is because G has two nodes of degree n,
while G′ has a one node of degree n and one node of degree n−1. Thus, |G′(n)−G(d)| is at least
1 for every d.

This flaw is removed if we “smooth out” the CCDHs by requiring them to be continuous. We
can convert the CCDH from a step function to one that connects the points at every integer value
of d with line segments.

Definition 2 (Smoothed CCDH). Let F :Z+→Z+ be the CCDH of a graph G. Then the Smoothed
CCDH of G is a the continuous function F ′ : R+→ R+ formed by connecting F(d) to F(d + 1)
with line segments for all d.

The RH-distance between smoothed CCDHs more accurately reflects our intuition. For in-
stance, in the example above, the RH distance between the smoothed CCDHs corresponding to G
and G′ above asymptotically tends to zero as n tends to infinity.

In the rest of this work, when we refer to the RH distance between two CCDHs, we implicitly
mean the RH distance between the smoothed versions.

1.3.2 Datasets

We performed our experiments on a mixture of synthetic and publicly available real world datasets.

The synthetic tests were carried out on streams generated using the “fast” Chung Lu method
outlined in section 2.3 of [19]. The process is twofold. First we assign a random desired degree
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to each node in the graph by drawing from a zeta distribution with parameter 3 (i.e. for all d ∈ N,
Pr[degree(v) = d] ∝ d−3 ). Then edges were generated one at a time with the endpoints chosen
at random proportional to the degrees of the nodes. The Zeta3 dataset refers to a collection of
30 graph streams generated in this manner. The graphs in these streams have 106 nodes and
approximately 1.37 million unique edges, and the streams on average contain only 40 repeated
edges.

The real world datasets we used are the AS-733 dataset, a snapshot of the autonomous system
network for 733 days [21] and the AUTH dataset [15], a network of system authentication on the
Los Alamos National Labs network. The AS-733 dataset has approximately 7000 nodes and 45645
unique edges. Overall, the entire stream contains 11965533 edges, and so every edge is repeated
an average of 262 times. The AUTH dataset has 33644 nodes and 312283 unique edges. The total
stream contains over 7×108 entries, with each edge repeated an average of over 2000 times. Both
of these real world datasets contain many repeated edges, whereas our synthetic datasets contain
relatively few. Our datasets are summarized in Table 1.1.

Dataset —V— Unique Edges Total edges
Zeta3 1M 1.37M 1.37M

AS-733 7K 45K 12M
AUTH 34K 312K 700M

Table 1.1. Summary of datasets used.

Figure 1.1 shows the quality of our estimates on a typical run of HHT for each dataset.

1.3.3 Comparison with HeadTail

Our goal in developing HHT was to add extra functionality to HT with minimal impact on perfor-
mance. HHT is designed to handle duplicate edges, but we expect some loss of accuracy compared
to HT due to the use of the Sliding HyperLogLog (SHLL) for approximating the number of dis-
tinct neighbors of a node.

To measure the accuracy loss, we modify each dataset so that duplicate edges are removed. We
then run HHT and HT with constant ph and pt set to .01. We modify HHT to query over a window
that encompasses the whole stream, and to avoid calling the Clean methods so that there is as little
algorithmic difference between it and HT as possible. The results are displayed in Table 1.2.

HeadTail is more accurate than HyperHeadTail on the real-world streams since it does not
have the added noise of the SHLL counters, but the RH error is still quite small. The difference
in accuracy becomes smaller for the synthetic streams since they have many more unique edges
and so the added noise from the SHLL counters has a smaller impact. We note that the RH error
of HHT can be lessened by allocating more storage space to SHLL to get more accurate distinct
element counters.
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(a) Estimated CCDH on whole stream of one of the
graphs in Zeta3. The RH distance is 0.28

(b) Estimated CCDH on the AS-733 dataset. The RH
distance is 0.30.

(c) Performance of HyperHeadTail on various datasets
with ph and pt set to 0.01.

Figure 1.1.
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Dataset HT distance HHT distance
Zeta3 .36 .33

AS-733 .21 .30
AUTH .07 .26

Table 1.2. Comparison of HHT and HT approximation quality.
In both cases, ph and pt each set to the constant 0.01. The numbers
for the Zeta3 results are an average over all 30 streams in that
dataset.

We also compared HHT with HT over variable-length time windows. To do this, we modified
the streams in the Zeta3 dataset. We truncated each stream to include only those edges in each
time window, removed all duplicate edges, and ran HT on those modified streams with ph and pt
set to HHT’s ph(w) and pt(w) respectively for each window size w. We summarize the results in
Table 1.3.

The actual space usage of HyperHeadTail varies based on the implementation of SHLL and
the setting of SHLL’s internal parameters. Larger space usage will yield more accurate counts,
and hence closer RH-distance. For the implementation we used in these tests, the maximum space
used by any node in Sh or St was approximately 1.6 kb, and the average was on the order of
several hundred bits per node. While this is a factor of 2-50x more than HeadTail, we stress
that HyperHeadTail is capable of handling repeated edges without increasing the storage require-
ments, and in real-world streams, edges might be repeated hundreds or thousands of times.

1.3.4 Performance Tuning

The performance of HyperHeadTail involves a tradeoff between accuracy and space usage based
on the settings of ph and pt . As with HeadTail, larger ph and pt values lead to higher accuracy,
but also higher space usage. The authors of HeadTail were unable to prove formal guarantees on
this relationship, and HyperHeadTail suffers from this same lack of formal analysis. However,
Table 1.4 illustrates the tradeoff empirically, by plotting the RH accuracy achieved with different
ph and pt values applied to the Zeta3 dataset.

Additionally, HyperHeadTail is meant to be applied to variable-length time windows, but
different ph and pt values are more appropriate for different size windows. Smaller windows
require larger ph and pt to achieve the same RH accuracy. To illustrate this point, Figure 1.2
contains a plot from a run of HHT with constant ph and pt queried over different windows. The
same setting of the parameters does not provide the same accuracy for streams of different sizes.

Tuning ph and pt is thus a manual process. We performed many experiments on the synthetic
data in order to give recommended ph and pt for various stream sizes. This data will be made
available online at [25]. We found that with proper adjustment of the parameters, we were able to
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Window Size RH-dist of HT RH-dist of HHT
10000 .52 .70
20000 .48 .35
30000 .38 .34
40000 .22 .35
50000 .23 .32
60000 .22 .33
70000 .22 .31
80000 .20 .30
90000 .21 .33

100000 .22 .31
200000 .22 .35
300000 .16 .28
400000 .13 .26
500000 .16 .26
600000 .17 .24
700000 .17 .24
800000 .17 .24
900000 .18 .24

Table 1.3. RH distance of HHT estimates compared to HT es-
timates over various time windows. Each had ph and pt set to a
constant value of .01. The distances are an average over all 30
graphs in the Zeta3 dataset. The extra noise caused by the SHLL
counters diminishes over the larger windows, and should by negli-
gible in graph streams of sufficient size.

maintain an RH accuracy of 0.27 on all windows compromising 200,000 or more unique edges by
tracking just 16% of nodes in the graph. If we require a minimum accurate window of 900,000
or more unique edges, we were able to maintain the same accuracy by tracking just 8% of nodes.
Figure 1.3 contains a more detailed overview of HHT’s performance on all of the streams in Zeta3
with properly configured ph and pt .

1.3.5 Anomaly Detection

One of the main motivations for developing a streaming algorithm for dynamically changing
streams is to provide a tool for detecting time-based anomalies in the network. There has been
a rich body of research on how degree distributions change over time and using the degree distri-
bution along with other metrics to detect anomalies [20, 16].

As a demonstration of the efficacy of HHT for this task, we ran HHT on the AS-733 dataset
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RH dist
ph

.001 .02 .04 .06 .08 .10

pt

.001 2.250 1.086 1.086 1.073 1.0 0.898
.02 0.875 0.421 0.272 0.272 0.272 0.272
.04 0.681 0.361 0.215 0.226 0.239 0.250
.06 0.571 0.228 0.241 0.250 0.258 0.250
.08 0.500 0.194 0.258 0.258 0.275 0.258
.10 0.429 0.194 0.272 0.281 0.281 0.260

Table 1.4. Averages of HHT run on all 30 streams in Zeta3. The
window size was set to 106 for each of these experiments. Each
cell contains the average performance of HHT with ph and pt set
to constant values corresponding to the row and column.

and estimated the degree distribution for each day at the end of that day and then compared that
estimation to the day before. If the distance between the two is high, then we expect large changes
in the graph. As Figure 1.4 shows, HHT tracks the true changes quite well. Large structural
changes in the network are readily apparent in consecutive estimates with large RH distance.

1.4 Discussion and Future Work

HyperHeadTail is the first streaming algorithm for estimating the degree distribution that is capa-
ble of handling duplicate edges and variable-length sliding time windows. There has been previous
work, such as [26], on estimating the degree distribution of a graph via sampling, and this work
can be adapted to the streaming setting. However, the algorithm of [26] involves solving complex
optimization problems. In our tests, it was simply infeasible to run [26] on the graph streams in
our datasets.

The naive algorithm for tracking the degree distribution in a streaming setting is to keep a
Sliding HyperLogLog counter for every node. However, HyperHeadTail shows that this is
unnecessary, since an accurate estimate can be obtained using only around 10% of this space.

The main avenue for future research is to prove formal approximation guarantees on the es-
timates provided by both HeadTail and HyperHeadTail. Although the authors of [23] prove
bounds on the accuracy of the head estimate of HeadTail, the accuracy of the tail estimate is still
not quantified. The greatest weakness of both HeadTail and HyperHeadTail is that they require
manual tuning of the ph and pt parameters. A more precise mathematical understanding of the
space versus accuracy tradeoff might lead to a method for setting these parameters automatically.

Despite the current lack of mathematical guarantees, we find HyperHeadTail to be a robust
and effective tool in practice, and we expect it to be helpful to network scientists studying the
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Figure 1.2. HHT performance on AUTH over increasing window
size queries., with ph and pt set to a constant value of .01. The
estimates are less accurate on smaller windows but converge to a
consistent, relatively accurate estimate.

evolution of dynamic graphs.
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Figure 1.3. HHT performance on 30 different streams. We tuned
ph and pt to offer constant levels of accuracy over the various win-
dow sizes.
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(a) Each point represents the difference between the
CCDH on two consecutive days from the AS-733
dataset. The horizontal axis represents the RH distance
as estimated by HHT, and the vertical axis represents the
true RH distance. Points in the upper right corner repre-
sent properly detected anomalies. False positive would
appear in the top left corner, and false negatives in the
bottom right.

(b) Anomaly detection on the AS-733 dataset.

Figure 1.4. CCDH estimates from two consecutive days in the
AS-733 dataset. This illustrates one of the points in the top-right
of figure (a), where the two consecutive CCDHs have high RH
distance > 0.9
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Chapter 2

Weighted Reservoir Sampling in the
Presence of Dynamic Weight Updates

Maintaining a sample of m items from a data stream of size n, where n >> m, is a classic problem
in the theory of small-space algorithms. We consider a variant of this problem, where the items
in the stream are weighted, and the stream consists of updates to those weights. The goal, at any
given point in the stream, is for each item to appear in the sample with probability proportional to
its current weight. We describe an algorithm for maintaining such a sample, when the items are
sampled with replacement. We also discuss a variant of the problem when the items are sampled
without replacement.

2.1 Preliminaries

The size of the sample is m. The length of the stream is n. The stream consists of elements of the
form (k,wold,wnew) where k is a key for the item, and wold,wnew ∈ R+ indicate the old and new
weight of item k. In general, the weights may increase or decrease. That is, wnew may be larger or
smaller than wold .

When the weights increase, we allow updates of the form (k,∆) where ∆∈R+ is a positive real
number indicating the difference wnew−wold . However, when the weights decrease, we require
both the old and the new weight in the update. To see why this is necessary, supposed we only
included the difference. Consider the sequence (a,2), (b,1), (a,-1), (b,-1), (c,2) with a sample of
size m = 1. At the end of this sequence, a should be in the sample with probability 1/3, and c
with probability 2/3. b should be in the sample with probability zero. However, the only way to
ensure that b is not in the sample is to delete b when its weight decreases. But note that this implies
deleting a from the sample when a’s weight decreases too, since a’s weight decreases by the same
amount at the same time.

There are two variants of the problem: sampling with replacement and sampling without re-
placement. In the former variant, the same item is allowed to occur multiple times in the sample.
The only requirement is that each member of the sample is an independent draw from the set of
items, with each item sampled with probability proportional to its weight. In the latter variant,
the sample must consist of m unique items. This latter variant is harder, since the sampling-with-
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replacement problem can be solved by using m different copies of a samping-without-replacement
algorithm with sample-size 1. We discuss the details below.

2.2 Sampling with Replacement

Sampling m items with replacement is reducible to the case of sampling a single item without re-
placement. We simply repeat the algorithm m times. Sampling a single item (m=1) with the correct
probability is relatively easy, but still not trivial. The difficulty stems from weight decreases. If
all the updates were increases, we could simply keep a running total t = ∑i wi and then upon re-
ceiving the next item (k,∆) where ∆ = wnew−wold > 0 we swap the current item k into the sample
with probability ∆/t. However, what if the update is a decrease of the form (k,wold,wnew) where
wold > wnew and k is currently in the sample? We could delete k from the sample but that would
likely leave a ”hole” in the sample. Moreover, conditioned on the hole being filled, the new entries
will be sampled with relatively greater probability than the old items (since the denominator t has
now decreased).

Let’s use the following sequence as an example: (a,2),(b,1),(a,2→ 1),(c,1). At the end of
this sequence, a, b, and c all have weight 1, so they should all appear in the sample with equal
probability. But naively, it is not clear how to make this happen. Specifically, it is not clear how
the algorithm should behave when the decrease occurs. Suppose the algorithm simply deletes a
from the sample (if it appears), then updates the total weight t (which decreases by one in this
case), and swaps a back into the sample with probability proportional to its new weight. If a does
not appear, then the total t is simply updated, and future inserts occur with probability computed
using this new total. With this strategy, the probability that a appears in the sample at the end of
the sequence is 2/3∗1/2 = 1/3, the probability that c appears is also 1/3, but the probability that b
occurs is 2/3∗1/3= 2/9. Thus, b is sampled disproportionally less (the remaining 1/9 probability
is the chance the sample remains empty at the end of this sequence, since nothing is swapped in to
replace the deleted a).

The trick here is to adopt a weighted version of the Random Pairing method of [14]. This
method ensures the correct probabilities by pairing weight increases later in the stream with weight
decreases earlier in the stream. In essence, the keys with weight increases are fulfilling the role of
the earlier ones whose weight decreased.

Here is the Dynamic Weighted Reservoir algorithm for sampling a single item (m = 1):

Dynamic Weighted Reservoir Sample
1: S: the sampled item
2: T : the total weight of all items, initialized to 0
3: d: weight of uncompensated deletions, always non-negative, initialized to 0
4: rand: returns a uniform random number in the interval [0,1)
5:
6: procedure INCREMENT(k,w) . Add w > 0 to item k’s current weight.
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7: T ← T +w
8: if d = 0 then
9: if rand() < w

T then
10: S← k
11: else if d ≥ w then
12: if S = /0 then
13: if rand() < w

d then
14: S← k
15: d← d−w
16: else if w > d then
17: INCREMENT(k,d)
18: INCREMENT(k,w-d)
19:
20: procedure DELETE(k,w) . Delete item k whose current weight is w
21: T ← T −w
22: d← d +w
23: if k ∈ S then
24: S← /0
25:
26: procedure REWEIGHT(k,wold,wnew): . When wnew > wold just use INCREMENT
27: DELETE(k,wold)
28: INCREMENT(k,wnew)

We prove the correctness of the algorithm via the following Theorem:

Theorem 4. After the i’th stream operation, let Ti be the total weight of all the elements, di be
the value of d, and w(k)i be the weight of item k. Then for all i ≥ 1, after the i’th operation the
probability of the sample being empty is di

Ti+di
, and the probability of the sample containing item k

is w(k)i
Ti+di

.

Proof. We will prove the theorem by induction. For the base case, we assume that the first op-
eration is not a deletion, so the value of d is 0. It is easy to see that the call INCREMENT(k,w)
just inserts k with probability w(k)1

T1
= 1. All other possibilities occur with zero probability, and all

other items have zero weight, so the lemma holds.

Now assume the lemma holds for operation i− 1. We will show it holds for operation i. We
divide this into two cases:

Case i: DELETE operations. Suppose operation i is a delete operation of the form
DELETE(k,w(k)i−1). By the inductive hypothesis, the probability that the sample is already empty
is di−1

Ti−1+di−1
and the probability that the sample equals k is w(k)i−1

Ti−1+di−1
. Thus,
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Pr[S = /0 after operation i] =
di−1 +w(k)i−1

Ti−1 +di−1
(2.1)

=
di

Ti−1 +di−1
(2.2)

=
di

Ti−1−w(k)i−1 +di−1 +w(k)i−1
(2.3)

=
di

Ti +di
(2.4)

Moreover, for another item l not equal to k, the probability that the sample equals l after
deleting item k is unchanged. Formally, it is w(l)i−1

Ti−1+di−1
= w(l)i

Ti+di
.

Case ii: INCREMENT operations. Suppose operation i is an increment operation of the form
INCREMENT(k,a). It suffices to handle the two cases: di−1 = 0 and di−1 ≥ a. It is easy to verify
that the third case, di−1 < a, is handled by the recursion.

First we examine the probability of the sample being empty. If di−1 = 0 then it is easy to see
that di = 0 as well, and there is no probability of the sample being empty.

If di−1 > a then the probability of being empty is equal to the probability that the sample is
already empty, times the probability that it does not get filled.

Pr[S = /0 after operation i] =
di−1

Ti−1 +di−1
· (1− a

di−1
) (2.5)

=
di−1−a

Ti−1 +di−1
(2.6)

=
di

Ti−1 +di−1
(2.7)

=
di

Ti−1 +a+di−1−a
(2.8)

=
di

Ti +di
(2.9)

Now we examine the probability that the sample S contains a particular item. For the item k
being incremented, we examine the probability that S contains k.

If di−1 = 0, then probability that the sample gets item k is the probability that the sample already
contained item k, plus the probability that the sample didn’t contain item k, but gets assigned it on
line 10, i.e.
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Pr[k ∈ S after operation i] =
w(k)i−1

Ti−1
+(1− w(k)i−1

Ti−1
) · a

Ti
(2.10)

=
w(k)i−a

Ti−a
+(

Ti−w(k)i

Ti−a
) · a

Ti
(2.11)

=
w(k)i

Ti
(2.12)

If di−1 > a, then probability that the sample contains k is the probability that the sample already
contained item k, plus the probability that the sample is empty, and then gets filled with item k on
line 14. That is

Pr[k ∈ S after operation i] =
w(k)i−1

Ti−1 +di−1
+

di−1

Ti−1 +di−1
· a

di−1
(2.13)

=
w(k)i−1 +a
Ti−1 +di−1

(2.14)

=
w(k)i

Ti−1 +a+di−1−a
(2.15)

=
w(k)i

Ti +di
(2.16)

Since the probability of being empty and the probability of being k are correct, the probability
of being any other item j must be proportionally correct from earlier steps.

2.3 Sampling without Replacement

Weighted sampling without replacement is a more subtle problem than sampling with replace-
ment. Part of the subtlety comes from simply defining the problem. There are least two differ-
ent variants of the sampling-without-replacement problem: sampling-with-defined-weights, and
sampling-with-defined-probabilities (see the discussion in Efraimidis [10]). The first definition
they credit to Chao [4]:

Definition 3 (Chao). (Weighted Random Sampling without Replacement, Proportional).
Input: A population of n weighted items and a size m for the random sample.
Output: A weighted random sample of size m. The probability of each item to be included in the
random sample is proportional to its relative weight.
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Note that the definition of Chao does not always make sense. For instance, when m = n,
every item will be chosen with probability 1, regardless of the relative weights. To remove this
complication, we say that a weight is infeasible if it is greater than 1/m, meaning that it should
be chosen with probability greater than 1. We then stipulate that an algorithm which solves the
weighted random sampling problem (under Chao’s definition) must choose all items with infeasible
weights with probability 1, until the set of resulting weights becomes feasible.

The definition of Chao is appealing because when the weights are feasible, it is easy to un-
derstand and compute the final probability of each item ending up in the sample. The appeal di-
minishes, however, when we note that the feasibility constraints imply that the order of the stream
matters. For instance, consider a sample of size 2 from the stream 1,2,3,4. It is easy to see that the
feasibility constraint implies that item 3 with either item 1 or 2 with probability 1. Hence there is
no chance that the final sample will contain both items 1 and 2. However, if the order is reversed,
and the items are inserted in decreasing weight order 4,3,2,1 then all probabilities will be feasible
at all times, and hence the probability that both 1 and 2 end up in the sample is non-negative.

The reliance on stream order makes this definition of sampling without replacement unsuitable
for our purposes. With dynamically changing weights, there is no guarantee that the weights will
remain feasible at all times, even if the final set of weights is feasible.

An alternative definition of weighted sampling with replacement comes from the work of [11].

Definition 4. (Weighted Random Sampling without Replacement, Sequential)
Input: A population of n weighted items and a size m for the random sample,
Output: A weighted random sample of size m. In each round, the probability of every unselected
item to be selected in that round is proportional to the relative item weight with respect to the
weights of all unselected items.

In other words, this definition of weighted sampling without replacement works according to a
sequential procedure: Select the first item with probability proportional to its weight, then select
the next item with probability proportional to its weight among the remaining items, and continue
like this until m items are selected.

This sequential procedure defines a probability distribution over permutations of items. What
Efraimidis and Spirakis show in [11] is that if for each item you draw a random uniform number Ui
from [0,1], then associate the key ki = Uwi

i with the item, then the distribution over permutations
of the items implied by the ordering of the ki’s is the same as with the sequential procedure. Thus,
to maintain a reservoir of size m, we can simply maintain an ordered list of the m largest ki’s, and
items will appear in the sample with probability equal to the sequential procedure.

The naive approach to deal with deletions using [11] is to simply keep a larger reservoir of say
m′> m items, and insert an item if its random key ki is larger than the smallest item in the reservoir.
If an item is deleted, we simply delete it from the reservoir, and hope that we still have more than
m items left. For new items, we continue computing keys before and insert if the new key is larger
than any currently stored one. The problem with this approach is that if the reservoir size ever dips
below m, then it will never get back up.
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For instance, if we want a sample of a single item (as above) we could keep track of the top 100
keys, and at any given time our sample is simply the largest key. As long as, at any given time, we
haven’t deleted all of the top 100 items, then our sample will be correct. However, in the rare event
that there is a sequence of deletions which does delete the top 100 items, then our sample will be
empty no matter how many items are inserted in the future. We could try to remedy this by always
taking the next item in the event that the sample is empty, but this is incorrect, since it ignores that
item’s weight.

2.4 Open Questions

There are multiple open questions from this work. For instance:

• Is it possible to develop a weighted random sampling algorithm with dynamically changing
weights, without replacement under the sequential model? We have a presented an algorithm
to do it with replacement, and [11] shows that you can sample without replacement when the
weights are not evolving. Can we combine the two?

• What other streaming algorithms can benefit from the sampling routine presented here?
Reservoir sampling is a basic building block of many streaming algorithms, so it is natu-
ral to wonder whether other streaming algorithms can also be made to work on dynamically
changing data sets.

We anticipate that these questions will inspire future research on streaming algorithms for a
dynamic, evolving world.
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